Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS One ; 16(1): e0243554, 2021.
Article in English | MEDLINE | ID: covidwho-1067394

ABSTRACT

With COVID-19 N95 shortages, frontline medical personnel are forced to reuse this disposable-but sophisticated-multilayer respirator. Widely used to decontaminate nonporous surfaces, UV-C light has demonstrated germicidal efficacy on porous, non-planar N95 respirators when all surfaces receive ≥1.0 J/cm2 dose. Of utmost importance across disciplines, translation of empirical evidence to implementation relies upon UV-C measurements frequently confounded by radiometer complexities. To enable rigorous on-respirator measurements, we introduce a photochromic indicator dose quantification technique for: (1) UV-C treatment design and (2) in-process UV-C dose validation. While addressing outstanding indicator limitations of qualitative readout and insufficient dynamic range, our methodology establishes that color-changing dosimetry can achieve the necessary accuracy (>90%), uncertainty (<10%), and UV-C specificity (>95%) required for UV-C dose measurements. In a measurement infeasible with radiometers, we observe a striking ~20× dose variation over N95s within one decontamination system. Furthermore, we adapt consumer electronics for accessible quantitative readout and use optical attenuators to extend indicator dynamic range >10× to quantify doses relevant for N95 decontamination. By transforming photochromic indicators into quantitative dosimeters, we illuminate critical considerations for both photochromic indicators themselves and UV-C decontamination processes.


Subject(s)
Decontamination/methods , N95 Respirators/microbiology , Respiratory Protective Devices/microbiology , COVID-19/prevention & control , Dose-Response Relationship, Radiation , Equipment Contamination/prevention & control , Equipment Contamination/statistics & numerical data , Equipment Reuse/statistics & numerical data , Humans , Indicators and Reagents/radiation effects , Radiometry/methods , SARS-CoV-2/pathogenicity , Sensitivity and Specificity , Ultraviolet Rays , Ventilators, Mechanical/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL